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Abst rac t .  We discuss the problem of scheduling tasks that consume a 
resource with known capacity and where the tasks have varying utility. 
We consider' problems in which the resource consumption and utility of 
each activity is described by probability distributions. In these circum- 
stances, we would like to find schedules that exceed a lower bound on 
the expected utility when executed. We first show that while some of 
these problems are NP-complete, others are only NP-Hard. We then 
describe various heuristic search algorithms to solve these problems and 
their drawbacks. Finally, we present empirical results that characterize 
the behavior of these heuristics over a variety of problem classes. 

1 Introduction 

In this paper we discuss scheduling problems for tasks that use quantities of 
consumable resources. Traditional scheduling problems consider tasks that have 
known resource consumption and known utility. However, we often encounter 
problems in which the resource consumption of a task is not known exactly, and 
instead we have only a probability distribution over resource use. For example, 
consider a scenario in which a remote sensing platform must analyze a set of data 
from different events that it has recieved. The utility of each event is unknown, 
as is the total power required to  perform the analysis. Time is also limited, as 
new events will occur. The task is to schedule the analysis steps in order to 
maximize the expected utility. 

Due to  the uncertainty of the resource consumption, some scheduled tasks 
may not actually be performed when a schedule is executed. If we amume that 
we have accurate knowledge of the distribution of resource consumption and job 
utility, we can compute the expected utility of a schedule by accounting for both 
the uncertain resource consumption and utility. Under these circumstances, we 
can either find a schedule that maximizes the expected utility, or find a schedule 
whose expected utility exceeds a lower bound. We are also interested in cases 
where solving the decision problem exactly may be impossible due to  the amount 
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of time required. This is often the case in on-board planning that is tightly 

The paper is organized as follows. In $2 we present both theoretical and em- 
pirical results on the problem of scheduling tasks that have uncertain resource 
consumption, utility, or both. Initially, we consider the case of consumable re- 
sources only. We then show how to extend the results to reusable resources, such 
as power, and replenishable resources, such as fuel. Finally, we show that the 
crucial aspect of this problem is the uncertainty in resource consumption; prob- 
lems in which the resource consumption is known and the utility is probabilistic 
are trivially reducible to  the Knapsack problem. 

The resulting problems are quite difficult to solve, and often the solution 
cost is higher still because of the need to do Monte-Carlo sampling to com- 
pute the convolution of probability distributions. Because of this cost and be- 
cause of our interest in performing scheduling in time-limited and computational 
resource-bounded environments, in $3 we investigate heuristics for greedy search 
algorithms to solve these problems. We first describe some likely heuristics, and 
discuss drawbacks to them. We then perform an empirical study on simple ver- 
sions of the problem. Our aim is to explore the space of problem features and 
possible heuristic approaches to the problem. We discuss the results of these 
investigations in $4. In $5 we describe some related work, and in $6 we conclude 
and discuss future work. 

integrated with plan execution and limited by resource utilization /I, 2). 
- 

2 Theory 

We begin with some informal definitions. A consumable resource is one that can 
be depleted but not renewed. A replenishable resource is a resource that can be 
depleted and renewed by different activity. A reusable resource is used for the 
duration of an action and returned when the action completes. Furthermore, 
we assume that activities consume resources when they begin execution; this 
is a bounding above approximation, but is useful in many circumstances, such 
as power use or block memory allocation. Similarly, if an activity replenishes a 
resource, we assume that the resource is replenished at the end of the activity. 
This defines the mapping from activities to events, and allows us to consider 
only the sequencing of the events of any activities that affect the level of the 
resource. In the case of consumable resources, there will only be one such event 
per task, while in the case of replenishable or reusable resources there may be 
two such events per task, one that consumes a resource and another that returns 
the resource. 

In this section we describe a total of 4 problem classes. Problems are distin- 
guished based on whether the resource is consumable or replenishable. We use an 
event based representation instead of an action based representation, since the 
case of reusable resources is subsumed by the more general case of replenishable 
resources. 

Problems are also distinguished based on whether the schedule is forced to 
be a permutation of events, or whether the schedule is allowed to  be a partial 
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order of events. This distinction is motivated by recent results that show then 
it is possible to  validate schedules consisting of a partial order of events when 
resource consumption isknown i3j. It turns out that the distinction matters 
when applied to problems with uncertain resource consumption. 

We will now introduce some notation. A scheduling problem consists of a 
set of events, J ,  that consume a set of resources, R = R1 ... Ri. Let Mi be 
the maximum amount of resource R, available at any time (i.e. it’s capacity); 
without loss of generality let the minimum amount of resource available a t  any 
time be 0. We will denote a schedule by T .  We will denote the xth  event in a 
schedule by r2. Let j be an event that modifies a resource R. Let P3(R) be the 
probability distribution for the amount of resource R consumed by event j. Let 
A2,= (R)  be the probability distribution over the amount of resource consumed 
after the execution of the xth  event in schedule T conditioned on the successful 
execution of all activities. Thus, Ao,=(R) is the probability distribution over the 
initial resource distribution and A,,,(R) is the convolution of Ao,?, and Py,., 
for all y _< x subject to the condition that the events succeed. Let &,(R) 
be the probability distribution over the amount of resource consumed after the 
execution of the x th  event in schedule x conditioned on the successful execution 
of activities l . .x - 1. Let Pj(U) be the probability distribution for the utility of 
job j. The task is to find a permutation of the events in J such that the expected 
utility of the schedule exceeds a bound U*. In order to compute the expected 
utility, we need a model of task execution that defines job failure. We assume 
that if the resource used by the task is exhausted by the task that it fails, and 
provides no utility. Similarly, if a task requires a resource that is exhausted, it 
provides no utility upon execution. 

- 

2.1 Consumable Resources 

We will now consider the case of consumable resources, that is, resources that 
are consumed by tasks and never returned or replenished. For now, we assume 
events have no absolute or relative temporal constraints. We also assume that 
the consumption of each event is determined only when the event is executed. 
Finally, we initially assume that events must be totally ordered, but we will 
consider the implications of relaxing this assumption. Thus, a schedule T is a 
total order of the events. Our goal is to find a schedule whose expceted utility 
exceeds a bound B which is an input to the problem. We refer to this problem 
as the Uncertain Consumable Resource Scheduling Problem (UCRSP). 

Initially, we will assume that there is only one resource R with maximum 
capacity R. We will also assume without loss of generality that the probability 
that there is less than 0 resource initially available is 0. The expected utility is 
computed as follows: for each job in the permutation, convolve the probability 
distributions of the resource consumptions of the events that have executed 
to  determine the probability distribution over the remaining resource amount. 
Next, determine the probability that the amount of resource remaining is greater 
than or equal to  zero. This is the probability that the task succeeds based on 
its modification of resource R. We will denote the probability that task r2 = j 
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succeeds by S2,=(R), which is simply the probability that there is some resource 

now compute the expected utility of the job, which is simply (Sz,T)(EPTz (U)) . 
Thus, the expected utility of schedule 7r is 

I -mmurE--e. we can 
. .  

I 
n 

I Theorem 1. UCRSP as in /VP. 

Proof. First, note we only need to convolve a linear number of distributions 
and compute a linear number of event utilities to compute the schedule utility. 
The multiplications and sums in the formula presented above are all polynomial 
time operations. All that remains is showing that the convolution operation is a 
polynomial time operation. In the worst case, we can do each convolution using 
Monte Carlo Integration, which takes constant time for a fixed error [4]. 

Theorem 2. UCRSP is NP-Hard. 

Proof. We will reduce the Knapsack problem to UCRSP. This problem consists 
of jobs with fked resource consumption and utility, where the task is to  find a 
partition of the items into those in the Knapsack and those not in the Knapsack, 
such that the Knapsack capacity is obeyed and the utility of the items in the 
Knapsack exceeds a bound. Thus, a Knapsack problem is simply a UCRSP where 
there is no uncertainty on the resource consumption, utility or the initial resource 
amount. A Knapsack item j *  = (r*,u*) where T* is the capacity and u* is the 
utility. Thus, we map j *  to a UCRSP event j with Pj(R) = (p(w) = 1) and 
Pj(U) = (p(u*) = 1). The initial amount of resource R in the U C W P  is the 
bound on the Knapsack size R*. The utility bound of the Knapsack is mapped 
to the expected utility bound of our problem. This mapping is easily seen to  be 
a linear time mapping. 

Now consider a schedule 7r that satisfies the expected utility bound of the 
UCRSP. The job failure model provides no utility to any job whose resource con- 
sumption would exceed the resource capacity. Any permutation can be mapped 
into a partition of jobs by the following linear time procedure: For any event j 
having a non-zero utility in 7r ,  the corresponding j *  is in the Knapsack, and all 
other events are not in the Knapsack. Since all j in the UCRSP, the only possible 
way for an event j to contribute zero utility is for the event’s resource consump- 
tion to exceed the resource bound. Thus, the set of Knapsack items must obey 
the Knapsack constraint. Further, by construction of the UCRSP, each event 
j that contributes utility is guaranteed to  contribute all of is utility, since all 
such events execute with probability 1. Thus, the set of Knapsack items is also 
guaranteed to  exceed the desired utility bound. It is clear from the simplicity of 
this mapping that the expected utility of the transformed job is the value of a 
solution to the Knapsack. Furthermore, a solution to the UCRSP is a solution 
to the Knapsack problem. Thus, UCRSP is NP-Hard. 
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Corollary 1. UCRSP is NP-Complete. 

and preserve NP-completeness, by aeans of a reduction from UCRSP without 
temporal constraints. The only additional machinery needed is to observe that 
we can validate the temporal constraints in polynomial time using the results of 
Dechter, Meiri and Pearl [5] .  

Finally, we observe that scaling the UCRSP up to multiple resources does 
not increase the difficulty of the problem. Suppose there are multiple resources, 
R, ... R,. We now need the probability that task j succeeds given the state of all of 
the resources, which we denote S z , K ( R ) ,  which is simply n, Sz,K(Rz).  Using this 
value, compute the expected utility of the job, which is simply Sz,K(R)(EP, ( U ) )  
. The expected utility is 

!. f u & e = & s e z 4 e ; C c h ~ M ~ ~ f r \ S P  - 

n 

i= 1 

Now let us consider some relaxations. The first relaxation is to  allow two 
events to  be scheduled at  exactly the same time. In this case, we have to mod- 
ify the task execution model, and thus the failure model. One option is the 
"conservative" model, in which two events scheduled simultaneously result in 
a single resource allocation. In this case, if the joint resource request exhausts 
the resource, both tasks fail. Under these assumptions, the problem is still in 
NP. However, this model is unlikely to be realistic, so we do not consider it of 
interest. 

An alternative is to assume that two events scheduled simultaneously are 
executed in arbitrary order. Thus, it is equiprobable that either event occurs first. 
In this case, the problem is no longer known to be in NP. The reason is that the 
certificate, a set of events such that the execution order is not determined, may 
not be verifiable in polynomial time. Consider an arbitrary set of simultaneous 
resource allocations. Is there a permutation of this set that exceeds a utility 
bound U*? This is simply a version of UCRSP, which we have just shown is in 
NP under the assumption that we enforce a permutation of event occurences. 
Thus, if P # AfP, then UCRSP with the relaxed certificate and the liberal event 
execution model is not in NP. 

The second relaxation is to permit the scheduler to  return a partial ordering 
of the events rather than a total ordering. It is easy to  see that this puts us in 
the same position as allowing two or more simultaneous events in a schedule. We 
can no longer guarantee that a schedule is a solution in polynomial time, because 
the validatation problem requires solving an NP-complete problem. Note that 
there is an additional complication, which is determining the probability of any 
permutation of the unordered events when computing the expected utility. 

2.2 Replenishable Resources 

Now let us consider the situation where resources are replenishable. We also 
begin with the assumptions that there are no temporal constraints, and that 



6 

all events must be totally ordered in a schedule. Both of these assumptions will 
be relaxed in turn. We refer to this problem as the Uncertain Replenishable 
Resource Scheduling Problem (URRSP). 

When computing the expected utility of a schedule, we must compute the 
probability that tasks fail because they allocate too much resource, as was true 
with consumable resources. In the case of replenishable resources, we must also 
compute the probability that tasks produce too much of resource R. Note that 
this is admirably handled by the fact that the convolution of the resource distri- 
butions is well defined for both increasing and decreasing the amount of resource 
available after event execution. 

As before, we will denote the probability that task x, = j succeeds S,,,(R), 
which is simply the probability that there is neither too much nor too little 
resource remaining after the execution of the job at position x in schedule T. 
Again, this is Jf&,,(R).  Using this value, we again can compute the expected 
utility of the job, which is simply (Sz,,)(EP,,(U)) . Thus, the expected utility 
of x is 

The generalization to multiple resources is also straightforward; s,,, (R)  = 

Theorem 3. URRSP is in NQ. 
Proof. As we saw for UCRSP, the expected utility computation only requires 
convolutions, additions and sums, all of which are accomplished in polynomial 
time. 

Theorem 4. URRSP is NP-Hard. 

Proof. We reduce the UCRSP to the URRSP by observing that a UCRSP is a 
URRSP with no events that produce the rr osource. 

We observe as before that adding temporal constraints preserves n/P-completeness 
using the same argument we used for the UCRSP. 

We now consider relaxing the assumptions on the total ordering of events 
in the schedule. Just as before, schedules are no longer verifiable in polynomial 
time if we allow events to  be simultaneous, or if we are forced to  try and verify 
schedules where sets of events are unordered. 

Finally, we must say a few words about the distinction between renewable re- 
sources and reusable resources in the context of uncertainty. A reusable resource 
is one that is allocated by an activity for a period of time, then returned for other 
activities to use. Reusable resources can be modeled using renewable resources 
quite easily; an event that consumes the resource represents the reusable activity 
start, while an event that represents the replenishment represents the end. The 
replenishment is constrained to replenish the same amount of resource that the 
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start event used. This causes a minor problem in modeling for the case of uncer- 
tain resource impacts; the underlying events must be constrained so that there is 
no uncertainty in the amount or replenishment 01 me resources. i n e  compiexlty 
results are identical as for the case of URRSP. However, the underlying problems 
are different enough that a different representation and heuristics may be useful 
when solving the problems. 

-_ 

2.3 Uncertain Utility is Uninteresting 

As a final point, we note that the interesting aspects of these problems are the un- 
certainty in the resource consumption. First, consider the problem of uncertainty 
in the utility with certainty in the resource consumption and no temporal con- 
straints. The problem now is identical to the Knapsack problem. The task is to 
find those tasks that can be executed (i.e. put in the Knapsack) whose expected 
utility exceeds a bound. From probability, E(P’(U)Pk(V)) = EP’(U)+EPk(U), 
so this is simply another Knapsack problem. The problem with temporal con- 
straints added simply limits the tasks that can simultaneously be in the Knap- 
sack. Another aspect of the problem with uncertain resource consumption that is 
of interest is that tasks in a schedule can be partitioned into roughly 3 sets: those 
guaranteed to execute, those guaranteed not to execute, and those that may exe- 
cute if tasks scheduled earlier do not overconsume (or overproduce) the resource. 
This is a more interesting problem than the traditional scheduling problem with 
job utility, where tasks are either accepted or rejected. It is not possible to reject 
tasks out of hand until the resource is exhausted with probability 1. 

2.4 Summary 

In summary, the problem of finding totally ordered schedules of activities with 
uncertain resource impact and uncertain reward such that the expected utility 
exceeds a bound is NP-complete. However, the problem of producing a flexible 
job ordering is not in NP if P # NP because the problem of validating the 
flexible schedule is itself an NP-complete problem. This is in stark contrast to 
the case of scheduling jobs whose resource consumption is known for certain l .  

Figure 1 summarizes these results. Note that we have omitted the results as- 
suming the conservative event execution model where simultaneous events make 
a joint resource demand and the simple version of the problem with uncertainty 
only in the utility of the events. 

3 Practice 

The above results place us in the unenviable position of coming up with algo- 
rithms and heuristics that are likely to perform well on this problem. We have 

Note that the reference is for non-rejectable jobs without utility. As long as jobs are 
definitely included or not included in a schedule, the exact order of the jobs can be 
left up in the air and certificates can still be validated in polynomial time for the 
case of scheduling jobs such that the reward exceeds a bound 



Fig. 1. Complexity of various problems of scheduling with uncertain resource consump- 
tion. 

the usual panoply of choices; constructive search algorithms driven by heuris- 
tics or local search algorithms driven by gradients and neighborhoods. As we 
mentioned before, we are currently interested in fast approximation algorithms 
for on-board scheduling. In the following sections, .we will focus on heuristics to 
drive greedy sampling approaches. 

3.1 Heuristics and their Discontents 

In this section we describe some heuristics that might be used to drive solutions 
to  this problem. For the following discussions we adopt the following notation. 
Suppose we have built a schedule prefix rZ. Now suppose that the jobs left are 
denoted by H and that the current utility is uT,. Recall that the distribution of 
the remaining resource amount after z executes is denoted zz ,T(R) .  

Intuitively, since our task is to maximize the expected utility of the schedule, 
we could employ a heuristic that chooses the next event by greedily maximizing 
the utility for all remaining events. Since the prefix 7rZ is fixed, this policy greedily 
maximizes the utility of the resulting schedule. We can compute the utility uhof 
each h E H given &,=(R). The heuristic, then, would select h'luhf 2 u h .  Note 
that this heuristic has an obvious generalization to multiple resources. 

This heuristic doesn't work well for a situation in which the expected resource 
consumption conditioned on the event succeeding is larger for the event whose 
utility is higher. So even though the expected value of the schedule looks better 
for this event alone, looking ahead would reveal that it is better to take the event 
with lower utility. For example, suppose we have a problem instance where the 
resource R has 3 units initially, and the following events: 

Event1 Pj(R) IPj(U)lUj 

1 IU 11.5. 4.511 3 11.5 

In this case, the heuristic would have us choose event 1 first; even though it 
has a non-zero chance of failure, its expected utility is 1.5, while the expected 
utility of the other events is 1. However, it's clear that any permutation of events 
2,3 and 4 will exceed the expected utility of event 1; we can put event 1 last 
and get a schedule of higher expected utility than any schedule with event 1 
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scheduled eariler. Furthermore, this heuristic fails to  distinguish the case where 
two jobs have the same expected utility: for example, 

-._____ 

In this case, if there are more jobs, the downstream impact of the higher 
resource consumption on the schedule might warrant choosing event 1 first, even 
though event 2 has the higher utility. We shall call this heuristic E. 

Suppose we choose the event that minimizes the expected resource con- 
sumption over all events without considering the state of the resource, i.e. 
h’lEPh1 (R) 5 EPh(R). Again, this has the result that the resource consumption 
of the resulting schedule is minimized, and consequently, maximizes the proba- 
bility of success of the resulting schedule. This heuristic doesn’t work well for a 
problem that is only a slight modification of the previous problem: again, let the 
resource R have initial endowment of 3 and change the event data as follows: 

U [0.5, 11 

It is now better to schedule event 1 first because scheduling the lower resource 
consuming events first does not overcome the high utility of the first event. 
Furthermore, this heuristic does not have an obvious generalization to many 
resources; it may not be possible to minimize the expected resource consumption 
on all resources simultaneously. We shall call this heuristic R. 

A related heuristic contemplates the resource impact assuming that an event 
succeeds, that is, does not deplete the resource. We choose the event that min- 
imizes the expectation over these distributions, i.e. h’lE(xT,z(R)17r2: = h’) 5 
E(&,z(R) l~z  = h). This heuristic will try and leave as much resource left as 
possible conditioned on event execution success. However, it does so by ignoring 
the event utility. It also doesn’t generalize well to multiple resources. Finally, 
it may require a more complex computation to  compute and thus may not be 
worth the cost. We shall call this heuristic S. 

4 Empirical Results 

To test the performance of the heuristics we described above, we performed 
a number of experiments on relatively simple, random domains. We considered 
problems with between ten and 20 jobs to be scheduled, and with approximately 
half that many constraints. Each of the jobs had a Gaussian distribution for the 
quantity of resources it consumed, with a range of values for the means. We 
considered problems in which the jobs had uniformly low variance, uniformly 
high variance, and random variance, and we varied the resource limit between 
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ten percent and 50 percent of the expected resource requirement for all the jobs. 
For each setting of these parameters, we generated 100 problems, and ran each 
of the heuristics on each problem. 

We evaluated the heuristics by using them greedily to select a single valid 
schedule. We then computed the expected value of that schedule as shown in 
Equation 1. The performance of the three heuristics was consistent over all sizes 
of problems and resource limits, so we show the results for a single setting of those 
parameters in Table 1. In this case, the problems had 20 jobs, ten constraints, 
mean resource usages for the jobs uniformly distributed between ten and 50, 
job utilities uniformly distributed between one and ten, and a resource limit of 
60 (ten percent of the expected resources required by all the jobs). We were 
particularly interested in the effects on the algorithms of changing the variance 
of the resource usage of the jobs, so we present results for three different resource 
usages. 

Job Variance Range Heuristic Mean schedule value Variance 
E 20.35 26.20 

0.1-1.0 R 18.52 33.92 
S 17.53 32.45 
E 13.88 32.88 

0.1-0.2 R 11.71 45.39 
S 11.18 26.55 
E 13.91 37.71 

0.8-1.0 R 11.72 44.91 
S 11.63 43.91 

As the table shows, the E heuristic (choose the job that maximizes the ex- 
pected utility of the schedule built so far) considerably outperforms the other 
two on essentially all these problems. The only exception is on a few very small 
problems on which both E and R are finding optimal, or very close to  optimal 
schedules. 

In $3.1 we described an example of where the E heuristic performs badly 
(the first table). This corresponds to problems where there is a strong correla- 
tion between the resource requirements of a job and its utility. Intuitiion suggests 
that this may be a fairly common situation, so we did some additional exper- 
iments on problems with this property, as well as the opposite, where there is 
anti-correlation between resource usage and utility. The anti-correlated case is 
intuitively easy to solve as the jobs with high utility are cheap to perform, and 
vice versa. The results of these experiments, with the variances ranging from 0.1 
to  0.2, are shown in Table 2. 
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Problem Type Heuristic Mean schedule value Variance 
E 13.88 32.88 

Uncorrelated R 11.71 45.39 
S 11.18 26.55 
E 10.08 0.07 

Correlated R 7.22 0.57 
S 8.02 0.78 
E 27.7360 50.03 

Anti-correlated R 27.7364 50.04 
S 23.64 51.13 

11 

As Table 2 shows, even in problems deliberately designed to exhibit charac- 
teristics that make E perform badly, it still tends to outperform R and S. On 
the anti-correlated (easy) problems R actually performed slightly better than E ,  
but these results are not statistically significant. In fact, both heuristics produce 
very similar schedules for these problems, and appear to perform very close to 
optimal (on small problems we have computed the optimal for). 

One problem with using the E heuristic is that it takes approximately 15 
times as long to find a schedule as the other two, due to the complexity of the 
Monte Carlo estimate of the value of the whole schedule at each step. As we said 
in Section 2.1, the Monte Carlo estimate is necessary because we need to compute 
the probability of success of each job, given that all previous jobs succeeded, 
to compute the utility d a schedule. One possible approximation to this is to 
ignore the condition that previous jobs succeeded, and instead use the probability 
that the schedule up to a particular job will complete in the given amount of 
resources. This is easily computed for Gaussian resource usage distributions as it 
it simply the sum of the usages for the jobs, which is itself a Gaussian. However, 
it overestimates the value of each schedule. Table 3 shows results on the same 
set of problems using this approximation, again only for the low variance case. 
There are two interesting results in this table. The first is that the approximation 
actually beats E for uncorrelated problems, by a statistically significant amount. 
We are currently investigating why this occurs, but our intuition is small jobs, 
that is those that use few resources, gain more from the approximation than 
large jobs, so it favours small jobs at the beginning of the schedule, which is 
good for cases such as this with tight resource bounds. We are currently running 
more experiemnts to test this hypothesis. The second interesting point is that 
on the other problems, the approximation performs comparably to R, and is in 
fact worse on anti-correlated problems. The computation time is still somewhat 
larger (a factor of around 2 )  for the approximation, which suggests that there 
is relatively little advantage to using the approximation over using R for many 
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Problem Type Heuristic Mean schedule value Variance 
E 13.88 32.88 

i Uncorrelated Approximation to E 16.07 26.75 
R 11.71 45.39 
E 10.08 0.07 

Correlated Approximation to E 8.01 0.78 
R 7.22 0.57 
E 27.74 50.03 

Anti-correlated Approximation to E 23.64 51.16 
R 27.7364 50.04 

problems. Again, we are currently conducting additional experiments to quantify 
exactly when one heuristic should be preferred over the other. 

5 Related Work 

There has been considerable work on a variety of planning and scheduling prob- 
lems with various assumptions of uncertainty and with various objective func- 
tions. Early papers on this topic discuss the computational complexity of sim- 
ple shop scheduling problems with exponentially distributed release times, due 
dates, and durations, where the goal is to minimize the expected makespan of 
the schedule or a weighted time objective [6,7]. One result of interest in [7] is 
that minimizing the weighted sum of late jobs under randomly distributed job 
characterisitcs is in F. At first glance this looks similar to the problems we de- 
scribe; however, UCRSP and URRSP are diflerent because we impose a fixed 
limit on the total resource use, which is equivalent to saying that the deadlines 
of all jobs are fixed; we also impose precedence and resource constraints. A nice 
extension to this work is the Time-Dependent MDP formulation of [8]. 

Other work discusses modification of standard algorithms like A* to work in 
settings where job data is randomly distributed [9]. Additional work describes an 
MDP-based approach to handling production scheduling where the job duration 
and utility of each action is uncertain [lo]. Again, UCRSP and URRSP differ 
from this problem in that they cannot be modeled as an MDP; the actual utility 
of any action is a function of the resource state, which is a function of the 
entire schedule to date, which violates the Markov property. FinalIy, the limited 
amount of work on maximizing schedule utility under resource uncertainty in an 
on-board setting does not handle the problem by posing it in the manner that 
we have considered it here [2,1]. 

With respect to planning, many previous approaches also make Markov-like 
assumptions about action failure [ll, 121. A recent exception is the work of [13], in 
which the goal is to find contingent plans under conditions where the probability 
of action failure depends on the state of a resource that is affected by the entire 
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plan prefix. Our work differs in that we limit ourselves to the case of scheduling; 
this makes it tractable to compute the utility of actions, and allows us to  provide 

c o m p l e x l t y t s .  
Finally, we should point out that the maximization of expected utility is a 

global constraint unlike any considered by previous work in this area. Most such 
constraints handle situations in which there is no uncertainty, and concentrate 
on various types of constraint satisfaction. Thus, this paper should serve as a 
challenge to members of the CP community to develop global constraints for 
maximizing expected utility. 

6 Conclusions and Future Work 

We have described a series of problems involving scheduling under uncertainty of 
resource consumption and event utility. We provide complexity results for these 
problems, and demonstrate that different heuristics provide different results un- 
der a variety of problem classes. 

The results in this paper are given for general probability distributions, and 
the experiments focus on one example, the Gaussian distribution. However, it is 
important to determine whether the probability distributions for resource con- 
sumption have an impact on the results. While it seems that the most important 
feature may be the relationship between the relative means and variances of the 
resource consumption and the utilities of the events, there may be significant 
secondary effects due to the shape of the distribution. Thus, further empirical 
and theoretical analysis is warranted. 

A useful heuristic is a strict dominance criteria for eliminating some candidate 
events from consideration as the next choice, such as those discussed in [9]. 
Suppose we have two events with the same resource consumption distribution but 
different (known) utilities. Clearly it is better to choose the event of higher utility. 
However, it is not clear how likely this is to happen in practice. Also, it is possible 
that no single event will be strictly dominated by all other events, and thus makes 
it even less likely that any reduction in the number of heuristic evaluations can 
be done. Finally, dominance must be extended to the case of totally ordering 
events with respect to uncertain resource consumption and utility to be generally 
applicable. 

We can imagine situations in which many tasks are identical. In this case, 
the number of total schedules is smaller than N ! ;  if there are k distinct classes 
of tasks such that we have N total tasks, and ni of each task from i = l . .k ,  then 
the total number of schedules is Suppose now that we have a set of jobs 

such that some of them are not identical, but are very close to identical. Rather 
than searching all possible permutations, it might be beneficial to cluster jobs 
and reduce the search space. We would like to find a bound on the error in the 
expected utility under approximations like this. Unfortunately, it seems difficult 
to do this. It is also uncertain if there are classes of problems that have this 
property. 

N !  n;=, 
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We can form various combinations of the heuristics by forming linear combi- 
nations and using one as the tie-breaker for another and so on. Some promising 

I combinations are as follows: 

- Sort by E first, then by R. 
- Sort by E first, then by 5’. 
- Linear combination of E and R. 
- Linear combination of E and S. 

Linear combination requires that we convert the heuristics from a relative rank- 
ing scheme into a function. This can be done using the utility or the expectation 
as the basis of the heuristic, and dividing the result for each event by the sum. 
Bias functions can also be used to emphasize the best choices if .desired [14]. 
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